Пример С3. Вертикальная прямоугольная плита весом P (рис. С3) закреплена сферическим шарниром в точке A, цилиндрическим (подшипником) в точке B и невесомым стержнем DD', лежащим в плоскости, параллельной плоскости yz. На плиту действуют сила \overline{F}_1 , (в плоскости xz), сила \overline{F}_2 (параллельная оси y) и пара сил с моментом M (в плоскости плиты).

Дано: P=5 кH, M=3 к H · м , $F_1=6$ кH, $F_2=7.5$ кH, $\alpha=30^\circ$, AB=1 м, BC=2 м, CE=0.5 AB, BK=0.5 BC.

Определить: реакции опор A, B и стержня DD'.

Решение. 1. Рассмотрим равновесие плиты. На нее действуют заданные силы \overline{P} , \overline{F}_1 , \overline{F}_2 и пара сил с моментом M, а также реакции связей. Реакцию сферического шарнира разложим на три составляющие \overline{X}_A , \overline{Y}_A , \overline{Z}_A цилиндрического (подшипника) — на две составляющие \overline{Y}_B , \overline{Z}_B (в плоскости, перпендикулярной оси подшипника) реакцию \overline{N} стержня направим вдоль стержня, предполагая, что он растянут.

2. Для определения шести неизвестных реакции составляем шесть уравнений равновесия действующей на плиту пространственной системы сил:

$$\sum F_{kx} = 0, \quad X_A + F_1 \cdot \cos \alpha = 0, \tag{1}$$

$$\sum F_{kv} = 0, \ Y_A + Y_B + F_2 - N \cdot \cos 75^\circ = 0, \tag{2}$$

$$\sum F_{kz} = 0, \ Z_A + Z_B - P - N \cdot \sin 75^{\circ} + F_1 \cdot \sin \alpha = 0,$$
 (3)

$$\sum M_x(\overline{F}_k) = 0, \quad -F_2 \cdot BK + N\cos 75^\circ \cdot BC = 0, \tag{4}$$

$$\sum M_{y}(\overline{F}_{k}) = 0, \quad P\frac{AB}{2} + F_{1}\cos\alpha \cdot BC - F_{1}\sin\alpha \cdot \frac{AB}{2} -$$

$$-Z_{A} \cdot AB + N\sin75^{\circ} \cdot AB + M = 0,$$
(5)

$$\sum M_z(\overline{F}_k) = 0, \quad Y_A \cdot AB - N\cos 75^\circ \cdot AB = 0.$$
 (6)

Для определения момента силы \overline{F}_1 относительно оси y разлагаем \overline{F}_1 на составляющие \overline{F}' и \overline{F}'' , параллельные осям x и z ($F_1^{'}=F_1\cos\alpha$, $F_1^{''}=F_1\sin\alpha$) и применяем теорему Вариньона (см. указания). Аналогично можно поступить при определении моментов реакции \overline{N} .

Подставив в составленные уравнения числовые значения всех заданных величин и решив затем уравнения, найдем, чему равны искомые реакции.

Ответ: $X_A = -5.2$ кH, $Y_A = 3.8$ кH, $Z_A = 28.4$ кH, $Y_B = -7.5$ кH, $Z_B = -12.4$ кH, N = 14.5 кH. Знаки указывают, что силы \overline{X}_A , \overline{Y}_B и \overline{Z}_B направлены противоположно показанным на рис. C3.